Learning to rank

Results: 420



#Item
21Statistics / Information science / Information retrieval / Machine learning / Learning to rank / Monotone likelihood ratio / K-nearest neighbors algorithm / Random sample consensus

Robust Structural Metric Learning Daryl K. H. Lim Department of Electrical and Computer Engineering, University of California, San Diego, CAUSA Brian McFee

Add to Reading List

Source URL: eceweb.ucsd.edu

Language: English - Date: 2015-07-31 19:00:26
22Information science / Information retrieval / Internet search engines / Query expansion / Google Search / Humancomputer information retrieval / Learning to rank

C:/Users/kevynct/Documents/sigir11-enir/sigir2011-rd-position.dvi

Add to Reading List

Source URL: select.cs.cmu.edu

Language: English - Date: 2011-06-25 11:59:44
23Machine learning / Supervised learning / Pattern recognition / Learning to rank / Semi-supervised learning / Dimensionality reduction / Deep learning / Feature learning

Core Machine Learning Techniques for Information Retrieval Luo Si Rong Jin

Add to Reading List

Source URL: www.sigir2011.org

Language: English - Date: 2011-07-24 21:02:12
24Machine learning / Psychometrics / Information retrieval evaluation / Nonparametric statistics / Recommender system / Precision and recall / Learning to rank / Missing data / Ranking / Scale

Top-N Recommendation with Missing Implicit Feedback Daryl Lim Julian McAuley Gert Lanckriet

Add to Reading List

Source URL: eceweb.ucsd.edu

Language: English - Date: 2015-07-31 19:00:25
25Machine learning / Learning / Learning to rank / Ranking SVM / Support vector machine / PageRank / Ranking / Stability / Document retrieval / Information retrieval / Feature selection / Supervised learning

Microsoft Word - LR4IR2009.v4-camera-nomark.doc

Add to Reading List

Source URL: www.sogou.com

Language: English - Date: 2016-06-28 04:30:57
26Information retrieval evaluation / Statistical inference / Information science / Measurement / Natural language processing / Precision and recall / Learning to rank / Confidence interval / Information retrieval / Discounted cumulative gain / Relevance / Standard error

Measuring the Reusability of Test Collections Ben Carterette† , Evgeniy Gabrilovich‡ , Vanja Josifovski‡ , Donald Metzler‡ † Department of Computer & Information Sciences, University of Delaware, Newark, DE ‡

Add to Reading List

Source URL: ir.cis.udel.edu

Language: English - Date: 2010-07-27 14:06:45
27Internet marketing / Support vector machine / Learning to rank / Quality Score / Online advertising / Search advertising / Pay per click / Targeted advertising / Feature selection / Advertising / Ranking

To Swing or not to Swing: Learning when (not) to Advertise Andrei Broder† , Massimiliano Ciaramita‡ , Marcus Fontoura, Evgeniy Gabrilovich† , Vanja Josifovski† , Donald Metzler† , Vanessa Murdock‡ , Vassilis

Add to Reading List

Source URL: fontoura.org

Language: English - Date: 2010-02-23 00:22:02
28Information retrieval evaluation / Search algorithms / Natural language processing / Relevance feedback / Ranking / Learning to rank / Discounted cumulative gain / Information retrieval / Relevance / Query expansion / Rocchio algorithm / Search engine indexing

Interactive Exploratory Search for Multi Page Search Results Xiaoran Jin and Marc Sloan∗and Jun Wang Department of Computer Science University College London

Add to Reading List

Source URL: www2013.org

Language: English - Date: 2014-07-21 08:47:08
29Natural language processing / Relevance feedback / Information retrieval / Okapi BM25 / Ranking / Document retrieval / Search engine indexing / Search engine / N-gram / Learning to rank

MultiText Legal Experiments at TREC 2007 Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack, Thomas R. Lynam David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada

Add to Reading List

Source URL: trec.nist.gov

Language: English - Date: 2008-02-11 08:18:55
30Machine learning / Search algorithms / Structured prediction / Learning / Learning to rank / Support vector machine / K-nearest neighbors algorithm / Ranking SVM

Metric Learning to Rank Brian McFee Department of Computer Science and Engineering, University of California, San Diego, CAUSA Gert Lanckriet

Add to Reading List

Source URL: eceweb.ucsd.edu

Language: English - Date: 2015-07-31 19:00:27
UPDATE